Integral of $$$2 x e^{x^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 x e^{x^{2}}\, dx$$$.
Solution
Let $$$u=x^{2}$$$.
Then $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (steps can be seen »), and we have that $$$x dx = \frac{du}{2}$$$.
The integral becomes
$${\color{red}{\int{2 x e^{x^{2}} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Recall that $$$u=x^{2}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{x^{2}}}}$$
Therefore,
$$\int{2 x e^{x^{2}} d x} = e^{x^{2}}$$
Add the constant of integration:
$$\int{2 x e^{x^{2}} d x} = e^{x^{2}}+C$$
Answer
$$$\int 2 x e^{x^{2}}\, dx = e^{x^{2}} + C$$$A