円錐曲線 $$$8 x y + 72 x + 4 y^{2} + 92 y + 8 = 0$$$ を判定してください
入力内容
円錐曲線 $$$8 x y + 72 x + 4 y^{2} + 92 y + 8 = 0$$$ の種類を判定し、その性質を求めなさい。
解答
円錐曲線の一般方程式は$$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$です。
この場合、$$$A = 0$$$, $$$B = 8$$$, $$$C = 4$$$, $$$D = 72$$$, $$$E = 92$$$, $$$F = 8$$$。
円錐曲線の判別式は$$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 31744$$$です。
次に、$$$B^{2} - 4 A C = 64$$$。
$$$B^{2} - 4 A C \gt 0$$$ であるので、この方程式は双曲線を表します。
その性質を求めるには、双曲線計算機を使用してください。
解答
$$$8 x y + 72 x + 4 y^{2} + 92 y + 8 = 0$$$A は双曲線を表します。
一般形:$$$8 x y + 72 x + 4 y^{2} + 92 y + 8 = 0$$$A。
グラフ:graphing calculatorを参照してください。
Please try a new game Rotatly