Integral dari $$$\pi$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \pi\, d\pi$$$.
Solusi
Terapkan aturan pangkat $$$\int \pi^{n}\, d\pi = \frac{\pi^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$${\color{red}{\int{\pi d \pi}}}={\color{red}{\frac{\pi^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{\pi^{2}}{2}\right)}}$$
Oleh karena itu,
$$\int{\pi d \pi} = \frac{\pi^{2}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\pi d \pi} = \frac{\pi^{2}}{2}+C$$
Jawaban
$$$\int \pi\, d\pi = \frac{\pi^{2}}{2} + C$$$A
Please try a new game Rotatly