Funktion $$$\frac{e^{x}}{x e^{2}}$$$ integraali

Laskin löytää funktion $$$\frac{e^{x}}{x e^{2}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{e^{x}}{x e^{2}}\, dx$$$.

Ratkaisu

Syöte kirjoitetaan muotoon: $$$\int{\frac{e^{x}}{x e^{2}} d x}=\int{\frac{e^{x - 2}}{x} d x}$$$.

Kirjoita integroituva uudelleen:

$${\color{red}{\int{\frac{e^{x - 2}}{x} d x}}} = {\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=e^{-2}$$$ ja $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$:

$${\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}} = {\color{red}{\frac{\int{\frac{e^{x}}{x} d x}}{e^{2}}}}$$

Tällä integraalilla (Eksponentti-integraali) ei ole suljettua muotoa:

$$\frac{{\color{red}{\int{\frac{e^{x}}{x} d x}}}}{e^{2}} = \frac{{\color{red}{\operatorname{Ei}{\left(x \right)}}}}{e^{2}}$$

Näin ollen,

$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}$$

Lisää integrointivakio:

$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}+C$$

Vastaus

$$$\int \frac{e^{x}}{x e^{2}}\, dx = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}} + C$$$A


Please try a new game Rotatly