Ολοκλήρωμα του $$$\frac{e^{x}}{x e^{2}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{e^{x}}{x e^{2}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{e^{x}}{x e^{2}}\, dx$$$.

Λύση

Η είσοδος επαναγράφεται: $$$\int{\frac{e^{x}}{x e^{2}} d x}=\int{\frac{e^{x - 2}}{x} d x}$$$.

Ξαναγράψτε την ολοκληρωτέα συνάρτηση:

$${\color{red}{\int{\frac{e^{x - 2}}{x} d x}}} = {\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=e^{-2}$$$ και $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$:

$${\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}} = {\color{red}{\frac{\int{\frac{e^{x}}{x} d x}}{e^{2}}}}$$

Αυτό το ολοκλήρωμα (Εκθετικό Ολοκλήρωμα) δεν έχει κλειστή μορφή:

$$\frac{{\color{red}{\int{\frac{e^{x}}{x} d x}}}}{e^{2}} = \frac{{\color{red}{\operatorname{Ei}{\left(x \right)}}}}{e^{2}}$$

Επομένως,

$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}+C$$

Απάντηση

$$$\int \frac{e^{x}}{x e^{2}}\, dx = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}} + C$$$A


Please try a new game Rotatly