Integrale di $$$\frac{e^{x}}{x e^{2}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{e^{x}}{x e^{2}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{e^{x}}{x e^{2}}\, dx$$$.

Soluzione

L'input viene riscritto: $$$\int{\frac{e^{x}}{x e^{2}} d x}=\int{\frac{e^{x - 2}}{x} d x}$$$.

Riscrivi l'integrando:

$${\color{red}{\int{\frac{e^{x - 2}}{x} d x}}} = {\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=e^{-2}$$$ e $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$:

$${\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}} = {\color{red}{\frac{\int{\frac{e^{x}}{x} d x}}{e^{2}}}}$$

Questo integrale (Integrale esponenziale) non ha una forma chiusa:

$$\frac{{\color{red}{\int{\frac{e^{x}}{x} d x}}}}{e^{2}} = \frac{{\color{red}{\operatorname{Ei}{\left(x \right)}}}}{e^{2}}$$

Pertanto,

$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}+C$$

Risposta

$$$\int \frac{e^{x}}{x e^{2}}\, dx = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}} + C$$$A


Please try a new game Rotatly