$$$\frac{e^{x}}{x e^{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{e^{x}}{x e^{2}}\, dx$$$.
Çözüm
Girdi yeniden yazıldı: $$$\int{\frac{e^{x}}{x e^{2}} d x}=\int{\frac{e^{x - 2}}{x} d x}$$$.
Integrand fonksiyonunu yeniden yazın:
$${\color{red}{\int{\frac{e^{x - 2}}{x} d x}}} = {\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=e^{-2}$$$ ve $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$ ile uygula:
$${\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}} = {\color{red}{\frac{\int{\frac{e^{x}}{x} d x}}{e^{2}}}}$$
Bu integralin (Üstel İntegral) kapalı biçimli bir ifadesi yok:
$$\frac{{\color{red}{\int{\frac{e^{x}}{x} d x}}}}{e^{2}} = \frac{{\color{red}{\operatorname{Ei}{\left(x \right)}}}}{e^{2}}$$
Dolayısıyla,
$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}+C$$
Cevap
$$$\int \frac{e^{x}}{x e^{2}}\, dx = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}} + C$$$A