Integral dari $$$\frac{e^{x}}{x e^{2}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{e^{x}}{x e^{2}}\, dx$$$.
Solusi
Masukan ditulis ulang: $$$\int{\frac{e^{x}}{x e^{2}} d x}=\int{\frac{e^{x - 2}}{x} d x}$$$.
Tulis ulang integran:
$${\color{red}{\int{\frac{e^{x - 2}}{x} d x}}} = {\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=e^{-2}$$$ dan $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$:
$${\color{red}{\int{\frac{e^{x}}{x e^{2}} d x}}} = {\color{red}{\frac{\int{\frac{e^{x}}{x} d x}}{e^{2}}}}$$
Integral ini (Integral Eksponensial) tidak memiliki bentuk tertutup:
$$\frac{{\color{red}{\int{\frac{e^{x}}{x} d x}}}}{e^{2}} = \frac{{\color{red}{\operatorname{Ei}{\left(x \right)}}}}{e^{2}}$$
Oleh karena itu,
$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}$$
Tambahkan konstanta integrasi:
$$\int{\frac{e^{x - 2}}{x} d x} = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}}+C$$
Jawaban
$$$\int \frac{e^{x}}{x e^{2}}\, dx = \frac{\operatorname{Ei}{\left(x \right)}}{e^{2}} + C$$$A