Tunnista kartioleikkaus $$$y = x^{2} e^{4} + 1$$$

Laskin tunnistaa ja määrittää kartioleikkauksen $$$y = x^{2} e^{4} + 1$$$ ominaisuudet, vaiheet näytetään.

Aiheeseen liittyvät laskurit: Paraabelilaskin, Ympyrälaskin, Ellipsilaskin, Hyperbelilaskin

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Tunnista ja määritä kartioleikkauksen $$$y = x^{2} e^{4} + 1$$$ ominaisuudet.

Ratkaisu

Kartiokäyrän yleinen yhtälö on $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

Meidän tapauksessamme $$$A = e^{4}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = -1$$$, $$$F = 1$$$.

Kartioleikkauksen diskriminantti on $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = - e^{4}$$$.

Seuraavaksi $$$B^{2} - 4 A C = 0$$$.

Koska $$$B^{2} - 4 A C = 0$$$, yhtälö kuvaa paraabelia.

Sen ominaisuuksien määrittämiseksi käytä parabola calculator.

Vastaus

$$$y = x^{2} e^{4} + 1$$$A määrittelee paraabelin.

Yleinen muoto: $$$x^{2} e^{4} - y + 1 = 0$$$A.

Kuvaaja: katso graphing calculator.


Please try a new game Rotatly