Integral de $$$11 e^{u}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 11 e^{u}\, du$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=11$$$ y $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{11 e^{u} d u}}} = {\color{red}{\left(11 \int{e^{u} d u}\right)}}$$
La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:
$$11 {\color{red}{\int{e^{u} d u}}} = 11 {\color{red}{e^{u}}}$$
Por lo tanto,
$$\int{11 e^{u} d u} = 11 e^{u}$$
Añade la constante de integración:
$$\int{11 e^{u} d u} = 11 e^{u}+C$$
Respuesta
$$$\int 11 e^{u}\, du = 11 e^{u} + C$$$A