Integral von $$$- a^{2} + \frac{1}{a^{2}}$$$ nach $$$x$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx$$$.
Lösung
Wenden Sie die Konstantenregel $$$\int c\, dx = c x$$$ mit $$$c=- a^{2} + \frac{1}{a^{2}}$$$ an:
$${\color{red}{\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x}}} = {\color{red}{x \left(- a^{2} + \frac{1}{a^{2}}\right)}}$$
Daher,
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = x \left(- a^{2} + \frac{1}{a^{2}}\right)$$
Vereinfachen:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}+C$$
Antwort
$$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx = \frac{x \left(1 - a^{4}\right)}{a^{2}} + C$$$A