Integrale di $$$- a^{2} + \frac{1}{a^{2}}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$- a^{2} + \frac{1}{a^{2}}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx$$$.

Soluzione

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=- a^{2} + \frac{1}{a^{2}}$$$:

$${\color{red}{\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x}}} = {\color{red}{x \left(- a^{2} + \frac{1}{a^{2}}\right)}}$$

Pertanto,

$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = x \left(- a^{2} + \frac{1}{a^{2}}\right)$$

Semplifica:

$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}$$

Aggiungi la costante di integrazione:

$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}+C$$

Risposta

$$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx = \frac{x \left(1 - a^{4}\right)}{a^{2}} + C$$$A


Please try a new game Rotatly