Ολοκλήρωμα της $$$- a^{2} + \frac{1}{a^{2}}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=- a^{2} + \frac{1}{a^{2}}$$$:
$${\color{red}{\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x}}} = {\color{red}{x \left(- a^{2} + \frac{1}{a^{2}}\right)}}$$
Επομένως,
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = x \left(- a^{2} + \frac{1}{a^{2}}\right)$$
Απλοποιήστε:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}+C$$
Απάντηση
$$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx = \frac{x \left(1 - a^{4}\right)}{a^{2}} + C$$$A