$$$- a^{2} + \frac{1}{a^{2}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx$$$。
解答
配合 $$$c=- a^{2} + \frac{1}{a^{2}}$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$${\color{red}{\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x}}} = {\color{red}{x \left(- a^{2} + \frac{1}{a^{2}}\right)}}$$
因此,
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = x \left(- a^{2} + \frac{1}{a^{2}}\right)$$
化簡:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}$$
加上積分常數:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}+C$$
答案
$$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx = \frac{x \left(1 - a^{4}\right)}{a^{2}} + C$$$A
Please try a new game Rotatly