Integral of $$$- a^{2} + \frac{1}{a^{2}}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=- a^{2} + \frac{1}{a^{2}}$$$:
$${\color{red}{\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x}}} = {\color{red}{x \left(- a^{2} + \frac{1}{a^{2}}\right)}}$$
Therefore,
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = x \left(- a^{2} + \frac{1}{a^{2}}\right)$$
Simplify:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}$$
Add the constant of integration:
$$\int{\left(- a^{2} + \frac{1}{a^{2}}\right)d x} = \frac{x \left(1 - a^{4}\right)}{a^{2}}+C$$
Answer
$$$\int \left(- a^{2} + \frac{1}{a^{2}}\right)\, dx = \frac{x \left(1 - a^{4}\right)}{a^{2}} + C$$$A