Ableitungsrechner
Ableitungen Schritt für Schritt berechnen
Der Online-Rechner berechnet die Ableitung jeder Funktion unter Verwendung der gängigen Differentiationsregeln (Produktregel, Quotientenregel, Kettenregel usw.) und zeigt die Rechenschritte an. Er kann Polynom-, rationale, irrationale, exponentielle, logarithmische, trigonometrische, inverse trigonometrische, hyperbolische und inverse hyperbolische Funktionen verarbeiten. Außerdem wertet er die Ableitung an der angegebenen Stelle aus, falls erforderlich. Er unterstützt auch die Berechnung der ersten, zweiten und dritten Ableitung, bis zur 10. Ableitung.
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right)$$$.
Lösung
Wende die Produktregel $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ mit $$$f{\left(x \right)} = x$$$ und $$$g{\left(x \right)} = \sin{\left(2 x \right)}$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \sin{\left(2 x \right)} + x \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$x \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) + \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) + \sin{\left(2 x \right)} {\color{red}\left(1\right)}$$Die Funktion $$$\sin{\left(2 x \right)}$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ und $$$g{\left(x \right)} = 2 x$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$$x {\color{red}\left(\frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)} + \sin{\left(2 x \right)} = x {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(2 x\right)\right)} + \sin{\left(2 x \right)}$$Die Ableitung des Sinus ist $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$x {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)} = x {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)}$$Zurück zur ursprünglichen Variable:
$$x \cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)} = x \cos{\left({\color{red}\left(2 x\right)} \right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 2$$$ und $$$f{\left(x \right)} = x$$$ an:
$$x \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} + \sin{\left(2 x \right)} = x \cos{\left(2 x \right)} {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)} + \sin{\left(2 x \right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 x \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \sin{\left(2 x \right)} = 2 x \cos{\left(2 x \right)} {\color{red}\left(1\right)} + \sin{\left(2 x \right)}$$Somit gilt $$$\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right) = 2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}$$$.
Antwort
$$$\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right) = 2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}$$$A