Calculadora de Derivativos

Calcular derivadas passo a passo

A calculadora online calculará a derivada de qualquer função usando as regras comuns de diferenciação (regra do produto, regra do quociente, regra da cadeia, etc.), com etapas mostradas. Ele pode lidar com funções polinomiais, racionais, irracionais, exponenciais, logarítmicas, trigonométricas, trigonométricas inversas, hiperbólicas e hiperbólicas inversas. Além disso, avaliará a derivada no ponto determinado, se necessário. Ele também suporta o cálculo da primeira, segunda e terceira derivadas, até 10.

Calculadoras relacionadas: Calculadora de diferenciação logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco se não precisar da derivada em um ponto específico.

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Sua entrada

Encontre $$$\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right)$$$.

Solução

Aplique a regra do produto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ com $$$f{\left(x \right)} = x$$$ e $$$g{\left(x \right)} = \sin{\left(2 x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \sin{\left(2 x \right)} + x \frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)}$$

Aplique a regra de potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, ou seja, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) + \sin{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \frac{d}{dx} \left(\sin{\left(2 x \right)}\right) + \sin{\left(2 x \right)} {\color{red}\left(1\right)}$$

A função $$$\sin{\left(2 x \right)}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ e $$$g{\left(x \right)} = 2 x$$$.

Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\sin{\left(2 x \right)}\right)\right)} + \sin{\left(2 x \right)} = x {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(2 x\right)\right)} + \sin{\left(2 x \right)}$$

A derivada do seno é $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$$x {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)} = x {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)}$$

Volte para a variável antiga:

$$x \cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)} = x \cos{\left({\color{red}\left(2 x\right)} \right)} \frac{d}{dx} \left(2 x\right) + \sin{\left(2 x \right)}$$

Aplique a regra múltipla constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = 2$$$ e $$$f{\left(x \right)} = x$$$:

$$x \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} + \sin{\left(2 x \right)} = x \cos{\left(2 x \right)} {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)} + \sin{\left(2 x \right)}$$

Aplique a regra de potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, ou seja, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$2 x \cos{\left(2 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \sin{\left(2 x \right)} = 2 x \cos{\left(2 x \right)} {\color{red}\left(1\right)} + \sin{\left(2 x \right)}$$

Assim, $$$\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right) = 2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}$$$.

Responder

$$$\frac{d}{dx} \left(x \sin{\left(2 x \right)}\right) = 2 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}$$$A