Calculadora de Diferenciação Implícita com Passos
Calcular derivadas implícitas passo a passo
A calculadora de diferenciação implícita encontrará a primeira e a segunda derivadas de uma função implícita tratando $$$y$$$ como uma função de $$$x$$$ ou $$$x$$$ como uma função de $$$y$$$ , com as etapas mostradas.
Sua entrada
Encontre $$$\frac{d}{dx} \left(x^{3} + y^{3} = 2 x y\right)$$$.
Solução
Diferencie separadamente ambos os lados da equação (trate $$$y$$$ como uma função de $$$x$$$ ): $$$\frac{d}{dx} \left(x^{3} + y^{3}{\left(x \right)}\right) = \frac{d}{dx} \left(2 x y{\left(x \right)}\right)$$$.
Diferencie o LHS da equação.
A derivada de uma soma/diferença é a soma/diferença das derivadas:
$${\color{red}\left(\frac{d}{dx} \left(x^{3} + y^{3}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(y^{3}{\left(x \right)}\right)\right)}$$Aplique a regra de poder $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 3$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} + \frac{d}{dx} \left(y^{3}{\left(x \right)}\right) = {\color{red}\left(3 x^{2}\right)} + \frac{d}{dx} \left(y^{3}{\left(x \right)}\right)$$A função $$$y^{3}{\left(x \right)}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = u^{3}$$$ e $$$g{\left(x \right)} = y{\left(x \right)}$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$3 x^{2} + {\color{red}\left(\frac{d}{dx} \left(y^{3}{\left(x \right)}\right)\right)} = 3 x^{2} + {\color{red}\left(\frac{d}{du} \left(u^{3}\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$Aplique a regra de poder $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ com $$$n = 3$$$:
$$3 x^{2} + {\color{red}\left(\frac{d}{du} \left(u^{3}\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) = 3 x^{2} + {\color{red}\left(3 u^{2}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Volte para a variável antiga:
$$3 x^{2} + 3 {\color{red}\left(u\right)}^{2} \frac{d}{dx} \left(y{\left(x \right)}\right) = 3 x^{2} + 3 {\color{red}\left(y{\left(x \right)}\right)}^{2} \frac{d}{dx} \left(y{\left(x \right)}\right)$$Assim, $$$\frac{d}{dx} \left(x^{3} + y^{3}{\left(x \right)}\right) = 3 x^{2} + 3 y^{2}{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$$.
Diferencie o RHS da equação.
Aplique a regra múltipla constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = 2$$$ e $$$f{\left(x \right)} = x y{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 x y{\left(x \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x y{\left(x \right)}\right)\right)}$$Aplique a regra do produto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ com $$$f{\left(x \right)} = x$$$ e $$$g{\left(x \right)} = y{\left(x \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(x y{\left(x \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(x\right) y{\left(x \right)} + x \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$Aplique a regra de potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, ou seja, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 x \frac{d}{dx} \left(y{\left(x \right)}\right) + 2 y{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 x \frac{d}{dx} \left(y{\left(x \right)}\right) + 2 y{\left(x \right)} {\color{red}\left(1\right)}$$Assim, $$$\frac{d}{dx} \left(2 x y{\left(x \right)}\right) = 2 x \frac{d}{dx} \left(y{\left(x \right)}\right) + 2 y{\left(x \right)}$$$.
Portanto, obtivemos a seguinte equação linear em relação à derivada: $$$3 x^{2} + 3 y^{2} \frac{dy}{dx} = 2 x \frac{dy}{dx} + 2 y$$$.
Resolvendo, obtemos que $$$\frac{dy}{dx} = \frac{3 x^{2} - 2 y}{2 x - 3 y^{2}}$$$.
Responder
$$$\frac{dy}{dx} = \frac{3 x^{2} - 2 y}{2 x - 3 y^{2}}$$$A