Calculadora de diferenciación implícita con pasos

Calcular derivadas implícitas paso a paso

La calculadora de diferenciación implícita encontrará la primera y la segunda derivada de una función implícita que trata a $$$y$$$ como una función de $$$x$$$ o $$$x$$$ como una función de $$$y$$$ , con pasos mostrados.

$$$($$$
,
$$$)$$$
Deje en blanco, si no necesita la derivada en un punto específico.

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Encuentra $$$\frac{d}{dx} \left(x^{3} + y^{3} = 2 x y\right)$$$.

Solución

Derive por separado ambos lados de la ecuación (trate a $$$y$$$ como una función de $$$x$$$ ): $$$\frac{d}{dx} \left(x^{3} + y^{3}{\left(x \right)}\right) = \frac{d}{dx} \left(2 x y{\left(x \right)}\right)$$$.

Diferenciar el LHS de la ecuación.

La derivada de una suma/diferencia es la suma/diferencia de derivadas:

$${\color{red}\left(\frac{d}{dx} \left(x^{3} + y^{3}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(y^{3}{\left(x \right)}\right)\right)}$$

La función $$$y^{3}{\left(x \right)}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = u^{3}$$$ y $$$g{\left(x \right)} = y{\left(x \right)}$$$.

Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(y^{3}{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = {\color{red}\left(\frac{d}{du} \left(u^{3}\right) \frac{d}{dx} \left(y{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x^{3}\right)$$

Aplique la regla de potencia $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = 3$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{3}\right)\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) + \frac{d}{dx} \left(x^{3}\right) = {\color{red}\left(3 u^{2}\right)} \frac{d}{dx} \left(y{\left(x \right)}\right) + \frac{d}{dx} \left(x^{3}\right)$$

Vuelva a la variable anterior:

$$3 {\color{red}\left(u\right)}^{2} \frac{d}{dx} \left(y{\left(x \right)}\right) + \frac{d}{dx} \left(x^{3}\right) = 3 {\color{red}\left(y{\left(x \right)}\right)}^{2} \frac{d}{dx} \left(y{\left(x \right)}\right) + \frac{d}{dx} \left(x^{3}\right)$$

Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 3$$$:

$$3 y^{2}{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right) + {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = 3 y^{2}{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right) + {\color{red}\left(3 x^{2}\right)}$$

Por lo tanto, $$$\frac{d}{dx} \left(x^{3} + y^{3}{\left(x \right)}\right) = 3 x^{2} + 3 y^{2}{\left(x \right)} \frac{d}{dx} \left(y{\left(x \right)}\right)$$$.

Derive la RHS de la ecuación.

Aplique la regla del múltiplo constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 2$$$ y $$$f{\left(x \right)} = x y{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 x y{\left(x \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x y{\left(x \right)}\right)\right)}$$

Aplique la regla del producto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ con $$$f{\left(x \right)} = x$$$ y $$$g{\left(x \right)} = y{\left(x \right)}$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(x y{\left(x \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(x\right) y{\left(x \right)} + x \frac{d}{dx} \left(y{\left(x \right)}\right)\right)}$$

Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$2 x \frac{d}{dx} \left(y{\left(x \right)}\right) + 2 y{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 x \frac{d}{dx} \left(y{\left(x \right)}\right) + 2 y{\left(x \right)} {\color{red}\left(1\right)}$$

Por lo tanto, $$$\frac{d}{dx} \left(2 x y{\left(x \right)}\right) = 2 x \frac{d}{dx} \left(y{\left(x \right)}\right) + 2 y{\left(x \right)}$$$.

Por tanto, hemos obtenido la siguiente ecuación lineal con respecto a la derivada: $$$3 x^{2} + 3 y^{2} \frac{dy}{dx} = 2 x \frac{dy}{dx} + 2 y$$$.

Resolviéndola, obtenemos que $$$\frac{dy}{dx} = \frac{3 x^{2} - 2 y}{2 x - 3 y^{2}}$$$.

Respuesta

$$$\frac{dy}{dx} = \frac{3 x^{2} - 2 y}{2 x - 3 y^{2}}$$$A