$$$\frac{\sin{\left(t \right)}}{t}$$$ 的積分
您的輸入
求$$$\int \frac{\sin{\left(t \right)}}{t}\, dt$$$。
解答
此積分(正弦積分)不存在閉式表示:
$${\color{red}{\int{\frac{\sin{\left(t \right)}}{t} d t}}} = {\color{red}{\operatorname{Si}{\left(t \right)}}}$$
因此,
$$\int{\frac{\sin{\left(t \right)}}{t} d t} = \operatorname{Si}{\left(t \right)}$$
加上積分常數:
$$\int{\frac{\sin{\left(t \right)}}{t} d t} = \operatorname{Si}{\left(t \right)}+C$$
答案
$$$\int \frac{\sin{\left(t \right)}}{t}\, dt = \operatorname{Si}{\left(t \right)} + C$$$A
Please try a new game Rotatly