Integral of $$$\frac{\sin{\left(t \right)}}{t}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin{\left(t \right)}}{t}\, dt$$$.
Solution
This integral (Sine Integral) does not have a closed form:
$${\color{red}{\int{\frac{\sin{\left(t \right)}}{t} d t}}} = {\color{red}{\operatorname{Si}{\left(t \right)}}}$$
Therefore,
$$\int{\frac{\sin{\left(t \right)}}{t} d t} = \operatorname{Si}{\left(t \right)}$$
Add the constant of integration:
$$\int{\frac{\sin{\left(t \right)}}{t} d t} = \operatorname{Si}{\left(t \right)}+C$$
Answer
$$$\int \frac{\sin{\left(t \right)}}{t}\, dt = \operatorname{Si}{\left(t \right)} + C$$$A
Please try a new game Rotatly