$$$\frac{e^{t}}{100}$$$ 的積分
您的輸入
求$$$\int \frac{e^{t}}{100}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\frac{1}{100}$$$ 與 $$$f{\left(t \right)} = e^{t}$$$:
$${\color{red}{\int{\frac{e^{t}}{100} d t}}} = {\color{red}{\left(\frac{\int{e^{t} d t}}{100}\right)}}$$
指數函數的積分為 $$$\int{e^{t} d t} = e^{t}$$$:
$$\frac{{\color{red}{\int{e^{t} d t}}}}{100} = \frac{{\color{red}{e^{t}}}}{100}$$
因此,
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}$$
加上積分常數:
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}+C$$
答案
$$$\int \frac{e^{t}}{100}\, dt = \frac{e^{t}}{100} + C$$$A
Please try a new game Rotatly