$$$\frac{e^{t}}{100}$$$の積分
入力内容
$$$\int \frac{e^{t}}{100}\, dt$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{100}$$$ と $$$f{\left(t \right)} = e^{t}$$$ に対して適用する:
$${\color{red}{\int{\frac{e^{t}}{100} d t}}} = {\color{red}{\left(\frac{\int{e^{t} d t}}{100}\right)}}$$
指数関数の積分は $$$\int{e^{t} d t} = e^{t}$$$です:
$$\frac{{\color{red}{\int{e^{t} d t}}}}{100} = \frac{{\color{red}{e^{t}}}}{100}$$
したがって、
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}$$
積分定数を加える:
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}+C$$
解答
$$$\int \frac{e^{t}}{100}\, dt = \frac{e^{t}}{100} + C$$$A
Please try a new game Rotatly