Ολοκλήρωμα του $$$\frac{e^{t}}{100}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{e^{t}}{100}\, dt$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{1}{100}$$$ και $$$f{\left(t \right)} = e^{t}$$$:
$${\color{red}{\int{\frac{e^{t}}{100} d t}}} = {\color{red}{\left(\frac{\int{e^{t} d t}}{100}\right)}}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{t} d t} = e^{t}$$$:
$$\frac{{\color{red}{\int{e^{t} d t}}}}{100} = \frac{{\color{red}{e^{t}}}}{100}$$
Επομένως,
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}+C$$
Απάντηση
$$$\int \frac{e^{t}}{100}\, dt = \frac{e^{t}}{100} + C$$$A