Integral of $$$\frac{e^{t}}{100}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{t}}{100}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{100}$$$ and $$$f{\left(t \right)} = e^{t}$$$:
$${\color{red}{\int{\frac{e^{t}}{100} d t}}} = {\color{red}{\left(\frac{\int{e^{t} d t}}{100}\right)}}$$
The integral of the exponential function is $$$\int{e^{t} d t} = e^{t}$$$:
$$\frac{{\color{red}{\int{e^{t} d t}}}}{100} = \frac{{\color{red}{e^{t}}}}{100}$$
Therefore,
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}$$
Add the constant of integration:
$$\int{\frac{e^{t}}{100} d t} = \frac{e^{t}}{100}+C$$
Answer
$$$\int \frac{e^{t}}{100}\, dt = \frac{e^{t}}{100} + C$$$A