$$$- 3 e^{x}$$$の積分

この計算機は、手順を示しながら$$$- 3 e^{x}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- 3 e^{x}\right)\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-3$$$$$$f{\left(x \right)} = e^{x}$$$ に対して適用する:

$${\color{red}{\int{\left(- 3 e^{x}\right)d x}}} = {\color{red}{\left(- 3 \int{e^{x} d x}\right)}}$$

指数関数の積分は $$$\int{e^{x} d x} = e^{x}$$$です:

$$- 3 {\color{red}{\int{e^{x} d x}}} = - 3 {\color{red}{e^{x}}}$$

したがって、

$$\int{\left(- 3 e^{x}\right)d x} = - 3 e^{x}$$

積分定数を加える:

$$\int{\left(- 3 e^{x}\right)d x} = - 3 e^{x}+C$$

解答

$$$\int \left(- 3 e^{x}\right)\, dx = - 3 e^{x} + C$$$A


Please try a new game Rotatly