Yksikkötangenttivektori funktiolle $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$
Aiheeseen liittyvät laskurit: Yksikkönormaalivektorin laskin, Yksikköbinormaalivektorilaskin
Syötteesi
Määritä $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$:n yksikkötangenttivektori.
Ratkaisu
Yksikkötangenttivektorin löytämiseksi on ensin löydettävä $$$\mathbf{\vec{r}\left(t\right)}$$$:n (tangenttivektorin) derivaatta ja sitten normalisoitava se (tehtävä siitä yksikkövektori).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$ (vaiheista, katso derivointilaskin).
Etsi yksikkövektori: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$$$ (vaiheittaiset ohjeet: katso yksikkövektorilaskin).
Vastaus
Yksikkötangenttivektori on $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle.$$$A