Enhetstangentvektor för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$

Kalkylatorn kommer att bestämma enhetstangentvektorn till $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$, med steg som visas.

Relaterade kalkylatorer: Räknare för enhetsnormalvektor, Kalkylator för enhetsbinormalvektor

$$$\langle$$$ $$$\rangle$$$
Kommaseparerat.
Lämna tomt om du inte behöver vektorn i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm enhetstangentvektorn för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$.

Lösning

För att bestämma enhetstangentvektorn behöver vi ta derivatan av $$$\mathbf{\vec{r}\left(t\right)}$$$ (tangentvektorn) och sedan normalisera den (till en enhetsvektor).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$ (för stegen, se derivataräknare).

Bestäm enhetsvektorn för $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$$$ (för steg, se enhetsvektorräknare).

Svar

Enhetstangentvektorn är $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle.$$$A


Please try a new game Rotatly