Eenheidsraakvector voor $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$

De rekenmachine zal de eenheidstangentvector aan $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$ vinden, met de stappen weergegeven.

Gerelateerde rekenmachines: Rekenmachine voor de eenheidsnormaalvector, Rekenmachine voor de eenheidsbinormaalvector

$$$\langle$$$ $$$\rangle$$$
Door komma's gescheiden.
Laat leeg indien de vector niet in een specifiek punt nodig is.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Vind de eenheidsraakvector voor $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$$$.

Oplossing

Om de eenheidsraakvector te vinden, moeten we de afgeleide van $$$\mathbf{\vec{r}\left(t\right)}$$$ (de raakvector) nemen en deze vervolgens normaliseren (de eenheidsvector bepalen).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$ (voor de stappen, zie afgeleide calculator.)

Bepaal de eenheidsvector: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$$$ (voor de stappen, zie eenheidsvector-calculator).

Antwoord

De eenheidsraakvector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle.$$$A


Please try a new game Rotatly