Eenheidsvector in de richting van $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$
Uw invoer
Vind de eenheidsvector in de richting van $$$\mathbf{\vec{u}} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$.
Oplossing
De norm van de vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}$$$ (voor de stappen, zie calculator voor de vectornorm).
De eenheidsvector wordt verkregen door elke coördinaat van de gegeven vector te delen door de norm.
Dus is de eenheidsvector $$$\mathbf{\vec{e}} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$$$ (voor de stappen, zie rekenmachine voor vermenigvuldiging van een vector met een scalair).
Antwoord
De eenheidsvector in de richting van $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$A is $$$\left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle = \left\langle \frac{e^{t} \left|{t}\right|^{0.5}}{t^{0.5} \left(2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|\right)^{0.5}}, \frac{e^{t}}{\left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}}, - \frac{e^{- t}}{\left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}}\right\rangle.$$$A