Vettore unitario nella direzione di $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$

La calcolatrice troverà il vettore unitario nella direzione del vettore $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$, mostrando i passaggi.
$$$\langle$$$ $$$\rangle$$$
Separati da virgola.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova il versore nella direzione di $$$\mathbf{\vec{u}} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$.

Soluzione

Il modulo del vettore è $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}$$$ (per i passaggi, vedi calcolatore del modulo del vettore).

Il vettore unitario si ottiene dividendo ciascuna componente del vettore dato per il suo modulo.

Pertanto, il vettore unitario è $$$\mathbf{\vec{e}} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$$$ (per i passaggi, vedi calcolatore per la moltiplicazione di un vettore per uno scalare).

Risposta

Il vettore unitario nella direzione di $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$A è $$$\left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle = \left\langle \frac{e^{t} \left|{t}\right|^{0.5}}{t^{0.5} \left(2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|\right)^{0.5}}, \frac{e^{t}}{\left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}}, - \frac{e^{- t}}{\left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}}\right\rangle.$$$A


Please try a new game Rotatly