Μοναδιαίο διάνυσμα κατά τη διεύθυνση του $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$
Η είσοδός σας
Βρείτε το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\mathbf{\vec{u}} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$.
Λύση
Το μέτρο του διανύσματος είναι $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}$$$ (για τα βήματα, δείτε υπολογιστής μέτρου διανύσματος).
Το μοναδιαίο διάνυσμα προκύπτει διαιρώντας κάθε συνιστώσα του δοθέντος διανύσματος με το μέτρο του.
Επομένως, το μοναδιαίο διάνυσμα είναι $$$\mathbf{\vec{e}} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής βαθμωτού πολλαπλασιασμού διανύσματος).
Απάντηση
Το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$A είναι $$$\left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle = \left\langle \frac{e^{t} \left|{t}\right|^{0.5}}{t^{0.5} \left(2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|\right)^{0.5}}, \frac{e^{t}}{\left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}}, - \frac{e^{- t}}{\left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}}\right\rangle.$$$A