Ολοκλήρωμα της $$$y e^{x}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int y e^{x}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=y$$$ και $$$f{\left(x \right)} = e^{x}$$$:
$${\color{red}{\int{y e^{x} d x}}} = {\color{red}{y \int{e^{x} d x}}}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{x} d x} = e^{x}$$$:
$$y {\color{red}{\int{e^{x} d x}}} = y {\color{red}{e^{x}}}$$
Επομένως,
$$\int{y e^{x} d x} = y e^{x}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{y e^{x} d x} = y e^{x}+C$$
Απάντηση
$$$\int y e^{x}\, dx = y e^{x} + C$$$A