Integral of $$$y e^{x}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int y e^{x}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=y$$$ and $$$f{\left(x \right)} = e^{x}$$$:
$${\color{red}{\int{y e^{x} d x}}} = {\color{red}{y \int{e^{x} d x}}}$$
The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:
$$y {\color{red}{\int{e^{x} d x}}} = y {\color{red}{e^{x}}}$$
Therefore,
$$\int{y e^{x} d x} = y e^{x}$$
Add the constant of integration:
$$\int{y e^{x} d x} = y e^{x}+C$$
Answer
$$$\int y e^{x}\, dx = y e^{x} + C$$$A
Please try a new game Rotatly