Integral von $$$\cos{\left(1 \right)} \cos{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\cos{\left(1 \right)}$$$ und $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ an:
$${\color{red}{\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\cos{\left(1 \right)} \int{\cos{\left(x \right)} d x}}}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\cos{\left(1 \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}} = \cos{\left(1 \right)} {\color{red}{\sin{\left(x \right)}}}$$
Daher,
$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}+C$$
Antwort
$$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx = \sin{\left(x \right)} \cos{\left(1 \right)} + C$$$A