Integraal van $$$\cos{\left(1 \right)} \cos{\left(x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\cos{\left(1 \right)} \cos{\left(x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx$$$.

De goniometrische functies verwachten het argument in radialen. Om het argument in graden in te voeren, vermenigvuldig het met pi/180, bijv. schrijf 45° als 45*pi/180, of gebruik de overeenkomstige functie door een 'd' toe te voegen, bijv. schrijf sin(45°) als sind(45).

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\cos{\left(1 \right)}$$$ en $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$${\color{red}{\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\cos{\left(1 \right)} \int{\cos{\left(x \right)} d x}}}$$

De integraal van de cosinus is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$\cos{\left(1 \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}} = \cos{\left(1 \right)} {\color{red}{\sin{\left(x \right)}}}$$

Dus,

$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}$$

Voeg de integratieconstante toe:

$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}+C$$

Antwoord

$$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx = \sin{\left(x \right)} \cos{\left(1 \right)} + C$$$A


Please try a new game Rotatly