Rekenmachine voor bepaalde en oneigenlijke integralen

Bereken bepaalde en oneigenlijke integralen stap voor stap

De rekenmachine zal proberen de bepaalde integraal (d.w.z. met grenzen) te berekenen, ook als deze oneigenlijk is, waarbij de stappen worden getoond.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(3 x^{2} + x - 1\right)d x}=x^{3} + \frac{x^{2}}{2} - x$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=2\right)}=8$$$

$$$\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=0\right)}=0$$$

$$$\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx=\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=2\right)}-\left(x^{3} + \frac{x^{2}}{2} - x\right)|_{\left(x=0\right)}=8$$$

Answer: $$$\int_{0}^{2}\left( 3 x^{2} + x - 1 \right)dx=8$$$