Intégrale de $$$\cos{\left(1 \right)} \cos{\left(x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\cos{\left(1 \right)}$$$ et $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ :
$${\color{red}{\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\cos{\left(1 \right)} \int{\cos{\left(x \right)} d x}}}$$
L’intégrale du cosinus est $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$ :
$$\cos{\left(1 \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}} = \cos{\left(1 \right)} {\color{red}{\sin{\left(x \right)}}}$$
Par conséquent,
$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}$$
Ajouter la constante d'intégration :
$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}+C$$
Réponse
$$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx = \sin{\left(x \right)} \cos{\left(1 \right)} + C$$$A