$$$\cos{\left(1 \right)} \cos{\left(x \right)}$$$ 的积分
您的输入
求$$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx$$$。
解答
对 $$$c=\cos{\left(1 \right)}$$$ 和 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\cos{\left(1 \right)} \int{\cos{\left(x \right)} d x}}}$$
余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\cos{\left(1 \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}} = \cos{\left(1 \right)} {\color{red}{\sin{\left(x \right)}}}$$
因此,
$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}$$
加上积分常数:
$$\int{\cos{\left(1 \right)} \cos{\left(x \right)} d x} = \sin{\left(x \right)} \cos{\left(1 \right)}+C$$
答案
$$$\int \cos{\left(1 \right)} \cos{\left(x \right)}\, dx = \sin{\left(x \right)} \cos{\left(1 \right)} + C$$$A