Integral von $$$\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx$$$.
Lösung
Sei $$$u=\sqrt{x}$$$.
Dann $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Das Integral wird zu
$${\color{red}{\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \cos{\left(u \right)} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=2$$$ und $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ an:
$${\color{red}{\int{2 \cos{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\cos{\left(u \right)} d u}\right)}}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Zur Erinnerung: $$$u=\sqrt{x}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\sqrt{x}}} \right)}$$
Daher,
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}+C$$
Antwort
$$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx = 2 \sin{\left(\sqrt{x} \right)} + C$$$A