Integral de $$$\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx$$$.
Solución
Sea $$$u=\sqrt{x}$$$.
Entonces $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Entonces,
$${\color{red}{\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \cos{\left(u \right)} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{2 \cos{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\cos{\left(u \right)} d u}\right)}}$$
La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Recordemos que $$$u=\sqrt{x}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\sqrt{x}}} \right)}$$
Por lo tanto,
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}$$
Añade la constante de integración:
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}+C$$
Respuesta
$$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx = 2 \sin{\left(\sqrt{x} \right)} + C$$$A