Ολοκλήρωμα του $$$\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx$$$.
Λύση
Έστω $$$u=\sqrt{x}$$$.
Τότε $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Επομένως,
$${\color{red}{\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \cos{\left(u \right)} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=2$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{2 \cos{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\cos{\left(u \right)} d u}\right)}}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Θυμηθείτε ότι $$$u=\sqrt{x}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\sqrt{x}}} \right)}$$
Επομένως,
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}+C$$
Απάντηση
$$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx = 2 \sin{\left(\sqrt{x} \right)} + C$$$A