Integral de $$$\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx$$$.
Solução
Seja $$$u=\sqrt{x}$$$.
Então $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (veja os passos »), e obtemos $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Portanto,
$${\color{red}{\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \cos{\left(u \right)} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=2$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{2 \cos{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\cos{\left(u \right)} d u}\right)}}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Recorde que $$$u=\sqrt{x}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\sqrt{x}}} \right)}$$
Portanto,
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}$$
Adicione a constante de integração:
$$\int{\frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = 2 \sin{\left(\sqrt{x} \right)}+C$$
Resposta
$$$\int \frac{\cos{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx = 2 \sin{\left(\sqrt{x} \right)} + C$$$A