Integral of $$$1 - y^{2}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(1 - y^{2}\right)\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1 - y^{2}$$$:
$${\color{red}{\int{\left(1 - y^{2}\right)d x}}} = {\color{red}{x \left(1 - y^{2}\right)}}$$
Therefore,
$$\int{\left(1 - y^{2}\right)d x} = x \left(1 - y^{2}\right)$$
Add the constant of integration:
$$\int{\left(1 - y^{2}\right)d x} = x \left(1 - y^{2}\right)+C$$
Answer
$$$\int \left(1 - y^{2}\right)\, dx = x \left(1 - y^{2}\right) + C$$$A
Please try a new game Rotatly