Integral of $$$\sec{\left(2 \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sec{\left(2 \right)}\, dx$$$.
The trigonometric functions expect the argument in radians. To enter the argument in degrees, multiply it by pi/180, e.g. write 45° as 45*pi/180, or use the appropriate function adding 'd', e.g. write sin(45°) as sind(45).
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\sec{\left(2 \right)}$$$:
$${\color{red}{\int{\sec{\left(2 \right)} d x}}} = {\color{red}{x \sec{\left(2 \right)}}}$$
Therefore,
$$\int{\sec{\left(2 \right)} d x} = x \sec{\left(2 \right)}$$
Add the constant of integration:
$$\int{\sec{\left(2 \right)} d x} = x \sec{\left(2 \right)}+C$$
Answer
$$$\int \sec{\left(2 \right)}\, dx = x \sec{\left(2 \right)} + C$$$A
Please try a new game Rotatly