Integral of $$$e^{x + e^{x}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{x + e^{x}}\, dx$$$.
Solution
Let $$$u=e^{x}$$$.
Then $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (steps can be seen »), and we have that $$$e^{x} dx = du$$$.
So,
$${\color{red}{\int{e^{x + e^{x}} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Recall that $$$u=e^{x}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{e^{x}}}}$$
Therefore,
$$\int{e^{x + e^{x}} d x} = e^{e^{x}}$$
Add the constant of integration:
$$\int{e^{x + e^{x}} d x} = e^{e^{x}}+C$$
Answer
$$$\int e^{x + e^{x}}\, dx = e^{e^{x}} + C$$$A