Integral of $$$3 e^{t}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 3 e^{t}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=3$$$ and $$$f{\left(t \right)} = e^{t}$$$:
$${\color{red}{\int{3 e^{t} d t}}} = {\color{red}{\left(3 \int{e^{t} d t}\right)}}$$
The integral of the exponential function is $$$\int{e^{t} d t} = e^{t}$$$:
$$3 {\color{red}{\int{e^{t} d t}}} = 3 {\color{red}{e^{t}}}$$
Therefore,
$$\int{3 e^{t} d t} = 3 e^{t}$$
Add the constant of integration:
$$\int{3 e^{t} d t} = 3 e^{t}+C$$
Answer
$$$\int 3 e^{t}\, dt = 3 e^{t} + C$$$A
Please try a new game Rotatly