$$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx$$$。
解答
將被積函數以正割表示:
$${\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$
$$$\sec^{2}{\left(x \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = {\color{red}{\tan{\left(x \right)}}}$$
因此,
$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}$$
加上積分常數:
$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}+C$$
答案
$$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx = \tan{\left(x \right)} + C$$$A
Please try a new game Rotatly