$$$\frac{1}{\cos^{2}{\left(x \right)}}$$$の積分
入力内容
$$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx$$$ を求めよ。
解答
被積分関数を正割関数で表しなさい:
$${\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$
$$$\sec^{2}{\left(x \right)}$$$ の不定積分は $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$ です:
$${\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = {\color{red}{\tan{\left(x \right)}}}$$
したがって、
$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}$$
積分定数を加える:
$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}+C$$
解答
$$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx = \tan{\left(x \right)} + C$$$A
Please try a new game Rotatly