Ολοκλήρωμα του $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx$$$.

Λύση

Εκφράστε τον ολοκληρωτέο σε όρους της τέμνουσας:

$${\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$

Το ολοκλήρωμα του $$$\sec^{2}{\left(x \right)}$$$ είναι $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$${\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = {\color{red}{\tan{\left(x \right)}}}$$

Επομένως,

$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}+C$$

Απάντηση

$$$\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx = \tan{\left(x \right)} + C$$$A


Please try a new game Rotatly